物理学

物理の模試で角度が中途半端なときに迷わない!三角比の近似と計算力を高める実践的対策ガイド

物理の力学問題では、傾斜角に応じてsinやcosを使う場面が多くあります。ところが、30°や45°のような典型的な角度ではなく、24°のような中途半端な角度が出てくると計算に迷う受験生も少なくありません。この記事では、こうした角度に対応する...
物理学

高校物理の質問をどこでするか?効果的な質問方法と活用できるリソース

高校物理の問題を解決するために質問したいけれど、どうしたらいいか迷っている方へ。学校の先生に質問するのが一般的ですが、質問が多すぎて時間が足りない、または自分で解決できる方法が知りたいという方もいるでしょう。この記事では、効率的に質問する方...
工学

材料力学:温度変化による管の内部応力を求める方法【実例解説】

材料力学における温度変化による内部応力の求め方について、具体的な実例を挙げて解説します。今回は、直径10cm、内径8.0cmの管の両端を固定した場合に、温度が40℃上昇したときに生じる固定端の力を求める問題を通して、計算方法とそのプロセスを...
工学

D種接地工事の鉄製箱アースの役割と漏電遮断器の関係

D種接地工事における鉄製箱アースの役割や漏電遮断器との関係については、初めて取り組む方にとっては少し複雑に感じるかもしれません。この記事では、鉄製箱アースが保護範囲に入るかどうか、そしてその理由について詳しく解説します。D種接地工事の基本概...
化学

硫酸銅(Ⅱ)5水和物の再結晶:溶解度から質量を求める計算方法

硫酸銅(Ⅱ)5水和物の再結晶を行う際、溶解度を基に析出する質量を計算する方法を理解しておくことは実験の精度を高めるために重要です。この記事では、硫酸銅(Ⅱ)の再結晶に関する問題の解法を解説します。特に、70℃と10℃での溶解度を用いた析出量...
化学

ケトエノール互変異性とは?ビニルアルコール以外の事例とその重要性

ケトエノール互変異性は、有機化学において重要な現象であり、特に化学の受験においてもよく出題されます。ビニルアルコールがその代表的な例として知られていますが、実は他にもケトエノール互変異性を示す化合物は存在します。この記事では、ケトエノール互...
建築

アトリエ系建築事務所でのリスクと激務:就職を目指す学生のためのガイド

東京都内の建築学生として、アトリエ系の建築設計事務所に就職することを考えると、さまざまなリスクや実情を理解しておくことが重要です。特に「クビになることがある」という話を耳にした場合、将来のキャリアにどう影響するのか、どのようなリスクが存在す...
建築

製図板の代替品:A1サイズのシナベニヤで製図は可能か?

機械工学系の学生が自宅で製図を行う際に、製図板を購入する予算がない場合、代替品を使用することを考えることがあります。例えば、A1サイズのシナベニヤをホムセンで購入し、製図板の代わりに使う方法についての疑問があります。この記事では、シナベニヤ...
哲学、倫理

非正規雇用と努力:努力で正社員になれるのか?

就職氷河期や不本意な非正規雇用に対して、努力不足だという意見がある一方で、努力だけでは解決できない現実があることも事実です。この記事では、努力と雇用の関係について、現実的な視点から考察し、全員が正社員になれるのか、努力が足りないのかを問い直...
哲学、倫理

理想と現実:希望をつなぐために必要な努力とは

理想を掲げることは重要ですが、その理想を実現するためには現実とのギャップを乗り越える必要があります。特に、歴史的な人物たちがどのように理想と現実の間で葛藤していたのかを知ることで、私たちも今後どう生きるべきかを考える手がかりになります。この...