高校数学 A⇔B⇔C なら A⇔C が成り立つか?その証明と解説 「A⇔B⇔CならA⇔Cは成り立つ」という命題に関する疑問を持ったことがある人は多いと思います。この記事では、この問題を数学的に証明する方法とその背景について解説します。「A⇔B⇔C なら A⇔C は成り立つ」の意味「A⇔B⇔C」という記号は... 2025.08.31 高校数学
高校数学 数学を勉強することで得られるスキルとその重要性 数学は多くの人にとって難しいと感じる科目かもしれませんが、実は日常生活や将来の仕事に非常に役立つスキルを身につけることができます。数学を学ぶことで、問題解決能力や論理的思考力が向上し、さらに現実の問題に対するアプローチ方法も変わります。この... 2025.08.31 高校数学
高校数学 高校2年生の数Ⅱ、Cテスト対策:抑えるべきポイントと裏技 高校2年生の数学Ⅱ、Cのテスト対策で、特に自信がない分野に焦点を当て、効率的な勉強法を紹介します。テストの範囲には不等号の証明や虚数解、座標、円の方程式、軌跡、ベクトルなど多くの重要なトピックがありますが、これらを有利に解くためのコツをお伝... 2025.08.31 高校数学
高校数学 計算量が多い大学の数学入試とは?横浜国立大学以外の例 横浜国立大学の数学入試は計算量が多く、難易度の高い試験として知られています。そこで、横国以外の大学で同様に計算量の多い数学の問題が出題される大学について解説します。計算力を試される入試問題を得意とする学生にとって、どの大学の入試が適している... 2025.08.31 高校数学
高校数学 高校数学:場合分けの違いと判断基準について 高校数学で場合分けをする際に、0か0じゃないかで分ける場合と、プラス、ゼロ、マイナスに分ける場合の違いについて解説します。この違いを理解することで、より効果的に場合分けを行えるようになります。場合分けの基本概念場合分けとは、ある条件に対して... 2025.08.31 高校数学
高校数学 数Aの解法、暗記だけで大丈夫?理解と暗記のバランスとは 数Aを学んでいる皆さん、解法の暗記について悩んでいる方も多いかと思います。確かに、数Aの問題には解法を覚えておくと便利なものもありますが、単なる暗記で乗り越えることは難しいこともあります。この記事では、数Aの解法における暗記の重要性と、理解... 2025.08.31 高校数学
高校数学 立命館理工学部志望者必見!河野塾の徹底基礎講座は数3だけでも大丈夫? 立命館理工学部を目指している皆さん、河野塾の徹底基礎講座について悩んでいる方も多いのではないでしょうか。特に、数3だけ受ければ良いのか、それとも全科目を受けるべきか迷っている方に向けて、今回はそのポイントを解説します。河野塾徹底基礎講座とは... 2025.08.31 高校数学
高校数学 y=-t²x+tの式をy=1/4xの接線として得る方法 y=-t²x+tとy=-x/(4t²)+1/(2t)はどちらもy=1/4xの接線を表す式ですが、y=-t²x+tをどのようにして得るかに関して説明します。以下にその方法を詳しく解説します。1. 問題の設定と前提条件まず、y=1/4xの接線を... 2025.08.31 高校数学
高校数学 フォーカスゴールドの背表紙の処分方法と保管について フォーカスゴールドを分解した後、背表紙を処分するべきか、保管するべきか悩むことがあるでしょう。この記事では、フォーカスゴールドの背表紙に関して、処分すべきか保管すべきか、そしてその理由について考察します。1. フォーカスゴールドの背表紙を保... 2025.08.31 高校数学
高校数学 正六角形のベクトル問題:△PRTの重心をp・qで表す方法 正六角形を使ったベクトルの問題は、図形の対称性を利用して簡潔に表せるのが特徴です。特に重心を求める問題では、各頂点の位置ベクトルを整理していくと理解しやすくなります。この記事では「正六角形OPQRSTで、△PRTの重心Gをp→、q→で表せ」... 2025.08.31 高校数学