この問題は、2人で仕事を進める場合にどのように作業時間を計算するかについての典型的な問題です。AさんとBさんが共同で作業をした場合の所要時間や、それぞれが作業した時間を求めるために必要な式について解説します。問題の解法に必要な式を一緒に考えていきましょう。
問題の整理と条件の確認
まず、問題の条件を整理します。Aさんが1人で仕事をすると7時間かかり、Bさんが1人で仕事をすると6時間かかるということです。共同で作業をしているとき、Bさんは途中で休んだので、作業全体は4時間40分(つまり4.67時間)かかりました。
この条件から、AさんとBさんの作業効率を求め、それぞれが作業した時間を計算します。AさんとBさんが共同で作業した場合の時間や、Bさんが休んだ時間を考慮するための計算式を導きます。
作業効率の求め方
まず、AさんとBさんの作業効率を求めます。Aさんが1時間でこなせる仕事量は、1時間あたりの作業量である1/7です。同様に、Bさんが1時間でこなせる仕事量は1/6です。
したがって、AさんとBさんが共同で1時間にできる仕事量は次の式で求められます。
共同作業の1時間あたりの仕事量 = (1/7 + 1/6) = (6 + 7) / 42 = 13 / 42
したがって、AさんとBさんが1時間でできる仕事量は13/42となります。
Bさんが作業した時間の計算
次に、Bさんが休む前に作業した時間を計算します。作業全体が4.67時間かかり、Aさんは最後まで作業をしたため、Bさんが作業した時間をx時間と仮定します。
このとき、AさんとBさんが共同で作業した時間の合計は4.67時間であり、AさんとBさんが作業した仕事量は次のように求められます。
仕事量 = 仕事量の合計 = (Aさんの作業時間) + (Bさんの作業時間) = (Aさんの作業効率 × 作業時間) + (Bさんの作業効率 × 作業時間)
この式を使ってBさんが作業した時間を求めることができます。
まとめと解法の確認
この問題では、AさんとBさんの作業効率を計算し、それぞれの作業時間を求めました。最終的に、Bさんが作業をした時間を求めるためには、共同作業の時間とAさんとBさんそれぞれの作業時間を考慮した式を使います。具体的な計算式を適用することで、Bさんが作業した時間は約何時間かを求めることができます。
計算の過程を順を追って理解することで、問題を解く手順がクリアになり、作業時間を効率的に計算する方法が分かります。
コメント