積分の問題で、変数の置換を行った際に、元の式と結果が一致しないことがあります。今回は、∮sinx/(sinx+cosx) dxの置換積分に関する疑問について詳しく解説します。
問題の確認
与えられた積分は次の通りです。
∮sinx/(sinx + cosx) dx
ここで、x = π/2 – θとおいて置換積分を行うと、次のように式が変形されます。
∮cosθ/(sinθ + cosθ) dθ
この式を求めた結果、元の式と一致しないと感じる理由について説明します。
置換積分のポイント
まず、置換積分を行う際の注意点として、積分範囲が変わる場合があることを確認しておきましょう。x = π/2 – θと置換すると、dxとdθの間に関係がありますが、積分範囲がどう変わるかに注意しないと元の結果と一致しません。
置換積分後の式の見方
x = π/2 – θという置換をすると、dxは-dθになります。このため、積分範囲が反転する可能性があります。この反転を考慮しないと、積分後の結果が元の積分結果と異なります。
結果が一致しない理由
具体的には、置換後の積分範囲が反転することによって、符号が逆転するため、積分の結果が符号の異なる形になります。これを解決するためには、積分範囲の変更も考慮した上で、符号の修正を行う必要があります。
まとめ
置換積分を行った際に結果が一致しない理由は、積分範囲の変更に伴う符号の変化が原因です。この点に注意し、積分範囲を適切に扱うことで正しい結果を得ることができます。
コメント