(x+3)²の解き方と(x+3)と2(x+3)の違いについて

数学

数学の問題に出てくる「(x+3)²」の解き方に困っている方も多いかもしれません。また、似ている式「2(x+3)」とどのように違うのかも気になるところです。今回は、この二つの式をどう解くか、そしてその違いについて解説します。

(x+3)²の解き方

「(x+3)²」とは、「(x+3)」を二乗したものです。この場合、二乗を意味する²があるため、次のように展開することができます。

(x+3)² = (x+3)(x+3) = x² + 3x + 3x + 9 = x² + 6x + 9

よって、(x+3)² = x² + 6x + 9となります。これが「(x+3)²」を解いた結果です。

2(x+3)との違い

「2(x+3)」という式は、「x+3」を2倍するものです。この場合、括弧内の計算を行ってから2倍します。

2(x+3) = 2x + 6

ここでのポイントは、括弧内の式はそのままにして、2を掛け算するだけであるという点です。つまり、(x+3)²のように二乗するのとは異なり、単に「2倍」にしているだけです。

(x+3)²と2(x+3)の大きな違い

「(x+3)²」と「2(x+3)」の最大の違いは、前者が二乗の操作をしているのに対し、後者は単に掛け算をしている点です。このため、展開した結果も異なります。

例えば、(x+3)²はx² + 6x + 9になる一方で、2(x+3)は2x + 6になります。数学の問題では、この違いを理解することが非常に重要です。

まとめ

「(x+3)²」と「2(x+3)」の違いを理解することができましたか?「(x+3)²」はx² + 6x + 9に展開され、「2(x+3)」は2x + 6になります。これらの式をしっかり覚えて、数学の問題に取り組んでいきましょう。

コメント

タイトルとURLをコピーしました