物理の問題で、水平上の粗い床に質量mの小球を初速度v0で転がした場合の運動エネルギーの変化量と動摩擦力が行う仕事を求める問題があります。今回はこの問題についての解説を行い、運動エネルギーの変化量と動摩擦力の仕事の関係について詳しく説明します。
1. 問題の設定
問題は、水平上の粗い床に置かれた質量mの小球が、初速度v0で転がり始め、最終的に静止するというシンプルな状況です。床の摩擦は動摩擦で、動摩擦係数はμです。この時、運動エネルギーの変化量と動摩擦力が行う仕事を求めることが求められています。
2. 運動エネルギーの変化量
運動エネルギーの変化量は、物体の初期の運動エネルギーと最終的な運動エネルギーの差です。最初の運動エネルギーは、次の式で表されます。
初期運動エネルギー = (1/2)mv0^2
最終的に小球は静止するので、最終的な運動エネルギーはゼロです。したがって、運動エネルギーの変化量は、次のように計算できます。
運動エネルギーの変化量 = 0 – (1/2)mv0^2 = – (1/2)mv0^2
3. 動摩擦力が行う仕事
次に、動摩擦力が行う仕事を求めます。摩擦力は、物体が移動する方向に逆らって働く力です。摩擦力による仕事は、次の式で求められます。
仕事 = 力 × 距離 × cos(θ)
摩擦力の大きさは、次のように求められます。
摩擦力 = μN
ここで、Nは物体の重さ(mg)です。したがって、摩擦力はμmgとなります。摩擦力が物体を静止させるために働く距離をdとすると、仕事は次のように表されます。
仕事 = -μmg × d
ここで、マイナス符号は摩擦力が物体を止める方向に働くことを示しています。摩擦力が行う仕事と運動エネルギーの変化量は等しいので、仕事は運動エネルギーの変化量と一致します。したがって、動摩擦力の仕事は、運動エネルギーの変化量と同じく- (1/2)mv0^2になります。
4. 結論
したがって、運動エネルギーの変化量と動摩擦力がした仕事はどちらも- (1/2)mv0^2となります。この問題では、運動エネルギーの変化量と摩擦力の仕事が一致する理由は、エネルギー保存の法則と摩擦力の性質に基づいています。
5. まとめ
運動エネルギーの変化量と動摩擦力の仕事が同じ値となることは、物理の基本的な法則であるエネルギー保存の法則に従っています。問題を解く際は、運動エネルギーと仕事の関係を正しく理解し、計算を行うことが重要です。


コメント